Search results for "self-affine set"

showing 6 items of 6 documents

Self-affine sets with fibered tangents

2016

We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation $\mathcal O$ such that all tangent sets at that point are either of the form $\mathcal O((\mathbb R \times C) \cap B(0,1))$, where $C$ is a closed porous set, or of the form $\mathcal O((\ell \times \{ 0 \}) \cap B(0,1))$, where $\ell$ is an interval.

Pure mathematicsClass (set theory)General MathematicsDynamical Systems (math.DS)Interval (mathematics)iterated function system01 natural sciencesself-affine setGeneric pointLine segmentstrictly self-affine sets0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsPoint (geometry)Porous set0101 mathematicsMathematics - Dynamical SystemsMathematicsApplied Mathematics010102 general mathematicsta111Tangenttangent setsTangent setMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation
researchProduct

Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension

2016

A fundamental problem in the dimension theory of self‐affine sets is the construction of high‐dimensional measures which yield sharp lower bounds for the Hausdorff dimension of the set. A natural strategy for the construction of such high‐dimensional measures is to investigate measures of maximal Lyapunov dimension; these measures can be alternatively interpreted as equilibrium states of the singular value function introduced by Falconer. While the existence of these equilibrium states has been well known for some years their structure has remained elusive, particularly in dimensions higher than two. In this article we give a complete description of the equilibrium states of the singular va…

dimension theory of self-affine setsconstruction of high-dimensional measuresFOS: MathematicsDynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct

Genericity of dimension drop on self-affine sets

2017

We prove that generically, for a self-affine set in $\mathbb{R}^d$, removing one of the affine maps which defines the set results in a strict reduction of the Hausdorff dimension. This gives a partial positive answer to a folklore open question.

Statistics and ProbabilityPure mathematicsthermodynamic formalismDynamical Systems (math.DS)01 natural sciencesself-affine setsingular value functionAffine combinationAffine hullClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematicsDiscrete mathematicsta111010102 general mathematicsMinkowski–Bouligand dimensionproducts of matricesEffective dimension010101 applied mathematicsAffine coordinate systemMathematics - Classical Analysis and ODEsHausdorff dimensionAffine transformationStatistics Probability and UncertaintyStatistics & Probability Letters
researchProduct

Dimension of self-affine sets for fixed translation vectors

2016

An affine iterated function system is a finite collection of affine invertible contractions and the invariant set associated to the mappings is called self-affine. In 1988, Falconer proved that, for given matrices, the Hausdorff dimension of the self-affine set is the affinity dimension for Lebesgue almost every translation vectors. Similar statement was proven by Jordan, Pollicott, and Simon in 2007 for the dimension of self-affine measures. In this article, we have an orthogonal approach. We introduce a class of self-affine systems in which, given translation vectors, we get the same results for Lebesgue almost all matrices. The proofs rely on Ledrappier-Young theory that was recently ver…

Self-affine setvektoritself-affine measurevectorsmatematiikka37C45 28A80FOS: MathematicsHausdorff dimensionDynamical Systems (math.DS)Mathematics - Dynamical Systems37C45 (primary)28A80 (secondary)matemaattiset objektit
researchProduct

Ledrappier-Young formula and exact dimensionality of self-affine measures

2017

In this paper, we solve the long standing open problem on exact dimensionality of self-affine measures on the plane. We show that every self-affine measure on the plane is exact dimensional regardless of the choice of the defining iterated function system. In higher dimensions, under certain assumptions, we prove that self-affine and quasi self-affine measures are exact dimensional. In both cases, the measures satisfy the Ledrappier-Young formula. peerReviewed

local dimensionPlane (geometry)General MathematicsOpen problem010102 general mathematicsMathematical analysista111Dynamical Systems (math.DS)01 natural sciencesMeasure (mathematics)self-affine set010101 applied mathematicsIterated function systemself-affine measureHausdorff dimension37C45 28A80FOS: MathematicsApplied mathematicsAffine transformation0101 mathematicsMathematics - Dynamical Systemshausdorff dimensionMathematicsCurse of dimensionality
researchProduct

Self-affine sets in analytic curves and algebraic surfaces

2018

We characterize analytic curves that contain non-trivial self-affine sets. We also prove that compact algebraic surfaces do not contain non-trivial self-affine sets. peerReviewed

Pure mathematicsGeneral Mathematicsta111010102 general mathematicsDynamical Systems (math.DS)01 natural sciencesself-affine setanalytic curvefractals0103 physical sciencesAlgebraic surfacealgebraic surfaceFOS: Mathematicsfraktaalit010307 mathematical physicsAffine transformationMathematics - Dynamical Systems0101 mathematicsMathematics
researchProduct